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Abstract-In this paper, an optimal adaptive 
transform coding system based on VQ is proposed. In 
the proposed approach, the K-means clustering is 
used to find representative image blocks through 
which VQ-based masks are found. The set of 
VQ-based masks is then applied in the selection of 
transform coefficients. It is shown that the set of 
VQ-based masks is optimal in the sense of minimum 
average energy loss. Next, the set of optimal 
VQ-based masks is applied in JPEG. The modified 
JPEG with optimal VQ-based masks is termed as 
OJPEG. Simulation results are provided to justify the 
optimality in VQ-based masks. Besides, the proposed 
OJPEG is compared with JPEG in terms of PSNR 
and bit rate. It indicates that the proposed OJPEG is 
able to trade little PSNR with significant bit rate 
reduction when compared with JPEG. 
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1. Introduction 
 
 The main objective in image coding is to 
reduce the required memory while the reconstructed 
image is of acceptable quality. Some applications of 
image coding are communications, multimedia 
system, and so forth. Among image coding 
techniques, vector quantization (VQ) [1] and 
transform coding [2] are two popular approaches. 
The operation of VQ is quite simple. The first step is 
to find a codebook or representative patterns from a 
given set of training patterns. Then each input pattern 
is assigned to a class index according a similarity 
measure, which is usually Euclidean distance. The 
reconstructed pattern is formed from its 
representative pattern. As for transform coding (TC), 
it transforms image blocks, from spatial domain to 
frequency domain, i.e., the information of image 
block is converted in its corresponding transform 
coefficients. Note that the quality of reconstructed 
image is related to the total energy of transform 
coefficients discarded in the coding process. 
Consequently, effectively selecting significant 
transform coefficients implies better quality of 
reconstructed image. 
 In this paper, an approach to incorporate VQ 
into TC is proposed. The application of VQ to TC is 
not new. Several types of application have been 
reported. In [3], a DCT-transformed image, based on 

the energy criteria, is classified as one of four classes: 
H, V, D, and L. Then the DCT transform coefficients 
are partitioned as several sub-vectors for each class. 
For each sub-vector in a given class, VQ is 
performed with different codebooks. In [4], VQ is 
used to construct ‘transform book’ which is a set of 
block transforms. By a similarity measure, an input 
image block is classified and a block transform is 
adaptively chosen to transform the given image block. 
In [5], an average optimal vector transform is 
designed. With the optimal vector transform, VQ is 
applied in the transform domain of image blocks. In 
[6], a self-organizing mapping neural network [7], 
which is considered as neural VQ, is employed in 
DCT domain because of the topology preserving 
property. In [8], VQ is applied to classify the linear 
prediction coefficients of image blocks while VQ is 
given to classify image blocks and the class index is 
then mapped to a pre-computed compressed bit 
stream in [9]. 
 In this paper, an optimal VQ-based transform 
coding approach is proposed where VQ is used to 
find optimal masks in the selection of transform 
coefficients. This paper is organized as follows. First, 
the K-man clustering is briefly reviewed. Then 
VQ-based masks are introduced which is followed by 
the derivation of the optimality in VQ-based masks. 
Next, the way to apply optimal VQ-based masks to 
JPEG is given. The modified JPEG with optimal 
VQ-based masks is called OJPEG. Then simulations 
are provided to justify the optimal set of VQ-based 
masks and to compare OJPEG with JPEG in terms of 
PSRN and bit rate. Finally, conclusions are made. 
 
2. The K-Means Clustering 
 
 This section gives a brief review of 
conventional VQ, the K-means clustering (KMC) [1]. 
Given a set of image blocks }1for  ,{ bi Ni ≤≤b  
where bN  is the total number of image blocks, the 
process of KMC to obtain K representative image 
blocks is summarized as follows. 
Step 1. Initialize representative image blocks kr , 

for Kk ≤≤1 , with random numbers. 
Step 2. For a given ib , the similarity measure, 

Euclidean distance, kd  is calculated as  
      kikd rb −=   (1) 
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for Kk ≤≤1 . Then classify ib  as class j 
if kkj dd min= . 

Step 3. Update representative image block kr , for 
Kk ≤≤1 , as 

    ∑
=

=
kN

i
ik

k
k N 1

 ,
1 br   (2) 

where ik  ,b  is a ib  belonging to class k 
and kN  is the total number of image 
blocks in class k. 

Step 4. Stop if the learning process converges. 
Otherwise, go to Step 2. 

 
 After learning, the representative image blocks 

kr , for Kk ≤≤1 , obtained from KMC are used to 
find masks and to classify image blocks in the 
proposed OJPEG. 
 
3. Optimal VQ-Based Masks 
 
 In this section, the way to find VQ-based 
masks is described in the following. Assume the 
original image O is of size LL ×  and is partitioned 
into ττ ×  image blocks denoted as 

}1for  ,{ bi Ni ≤≤b , where 2)/( τLNb = . The way 
to find VQ-based masks is described in the 
following. 
Step 1. Obtain representative image blocks kr  by 

KMC, for Kk ≤≤1 . 
Step 2. Classify image blocks }1for  ,{ bi Ni ≤≤b  

into K classes. The classified set is denoted 
as }1 ,1for  ,{ , kik NiKk ≤≤≤≤b  where 

kN  is the number of image blocks assigned 
to class k. 

Step 3. Find the transformed image block of ik  ,b  
as } DCT{ , , ikik bB =  where }DCT{⋅  is 
the discrete cosine transform [2]. 

Step 4. Calculate the average energy image block of 
ik  ,B  as 

 ∑
=

=
kN

i
ikik

k
k N 1

,, *.1 BBB   (3) 

where operation .* is the element-to-element 
multiplication. 

Step 5. Sort elements of kB  in the descending 
order by energy. 

Step 6. Save the indices of sorted elements in kB  
as set kS . 

Step 7. Through kS , find VQ-based masks M,kA  
where the subscript M denotes the number 
of elements selected in kS . When 
parameter M is specified, the first M indices 
in kS  are selected to find M,kA . 

 Masks M,kA  are matrices with elements of 
zero or one. If the indices in kS  are selected, the 
corresponding elements in kB  are set to one and set 
to zero, otherwise. The resulted matrix is the mask 
for class k. The set of masks M,kA  will be applied in 
the selection of transform coefficients. Since masks 

M,kA  are fixed for all classes, thus the number of 
selected coefficients is same for all ik  ,B . 
 
4. Optimality in VQ-Based Masks 
 
 In this section, VQ-based masks obtained in the 
previous section are shown to be optimal in the sense 
of minimum average loss. Note that kr  is obtained 
as 

  ∑
=

=
kN

i
ik

kN 1
 ,

1 brk    (4) 

where ik  ,b  is the ith image block in class k. By a 
linear orthogonal transformation T such as DCT, the 
transformed kr  is found as 
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where }{  , , ikik T bB =  and elements of kR  are 
calculated as 
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In (6), ),( , lmB ik  are elements of ik  ,B . By squaring 
both sides of (6), we have 

   

),(),(1

),(]),(1[1

]),(1[),(

1

2
 ,

2

1
 ,

2

lmClmB
N

lmClmB
NN

lmB
N

lmR

kk
k

k

N

i
ik

kk

N

i
ik

k
k

k

k

+=

+=

=

∑

∑

=

=

 (7) 

where 

   ∑
=

=
kN

i
ik

k
k lmB

N
lmB

1

2
 , ),(1),(   (8) 

is the average energy of the ),( lm  element in image 
blocks ik  ,B  and ),( lmCk  denotes the sum of cross 

terms in expanding 2

1
 , ]),(1[ ∑

=

kN

i
ik

k

lmB
N

. Note that 

the element-to-element relationship between 
),(2 lmRk  and ),( lmBk  has been established. 

 Now, define 
 ),()],(),([),(~ 22 lmBlmClmRNlmR kkkkk =−=   (9) 
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With elements defined in (9), a new block kR~  is 

formed. Note that kR~  is identical to kR  in (3). As 
described in the previous section, the set kS  is 

found from kR~ . Given parameter M, mask Mk  ,A  is 

obtained. Denote Mk  ,R̂  as kR~  with M elements 

selected by Mk  ,A , i.e., MkMkMk  , , ,
~*.ˆ RAR = . Then 

the average energy loss in class k is given as 

  ]),(ˆ),(~[
1 1

2
 ,

2
 , ∑∑

= =

−=
τ τ

m l
MkkMk lmRlmRE  (10) 

 To see MkE  ,  is minimum, the 
energy-invariant property in an orthogonal 
transformation is applied [2]. For image blocks in 
class k, it implies that 
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where (8) is applied in the second equality. With (10) 
and (11), it is clear that MkE  ,  is of minimum 

average energy loss since Mk  ,R̂  retains M most 

significant ),( lmBk . Consequently, MkMk EE  , , ′≤  
for all M, where MkE  ,′  is an average energy loss 
with arbitrary mask Mk  ,A′ . When MkMk  , , AA =′ , the 
equality MkMk EE  , , ′=  holds. This implies that 

Mk  ,A  is an optimal mask for class k in the sense of 
minimum average energy loss. 
 Next, consider the average energy loss in the 
original image O. With masks Mk  ,A  for Kk ≤≤1 , 
the overall average energy loss for image O, ME , is 
given as 

   ∑
=

=
K

k
MkM E

K
E

1
 ,

1   (12) 

The overall average energy loss ME  is minimum 
because of the optimality principle of dynamic 
programming [11]. Thus MM EE ′≤  for all M, where 

ME ′  is an overall average energy loss with arbitrary 
set of masks Mk  ,A′  for Kk ≤≤1 . When 

MkMk  , , AA =′  for all k, the equality MM EE ′=  
holds. This concludes that Mk  ,A , for Kk ≤≤1 , 
form a set of optimal masks for image O in the sense 
of minimum average energy loss. 
 
 
 
 

5. JPEG with Optimal VQ-Based Masks 
 
 In this section, optimal VQ-based masks Mk  ,A  
are applied to JPEG [10]. The coding process of 
JPEG is shown in Figure 1 where ZZS and DPCM 
stand for zigzag scan and differential pulse code 
modulation, respectively. Here, JPEG is modified to 
incorporate optimal masks Mk  ,A  which are used in 
the selection of transform coefficients. The modified 
JPEG is termed as optimal JPEG (OJPEG) and is 
described in the following. 
 Given an LL ×  image O, the proposed 
OJPEG with a specified M is described in the 
following. 
Step 1. Partition image O as ττ ×  image blocks 

}1for  ,{ bi Ni ≤≤b  where L<τ  and 
2)/( τLNb = . 

Step 2. Classify image blocks }1for  ,{ bi Ni ≤≤b  
into K classes by KMC. The classified 
image block ib  is denoted as ik ,b  when it 
belongs to class k. 

Step 3. Find set kS  and then optimal masks Mk  ,A , 
for Kk ≤≤1 . 

Step 4. Obtain ikMkik  , , , *.ˆ BAB = . 

Step 5. Quantize and code ik  ,B̂ as in JPEG except 
the order of M ,kS is used rather than ZZS 
where M ,kS  is the set with the first M 
elements in kS . 

Step 6. Decode ik  ,B̂  through M ,kS  and find the 
reconstructed image block 

}ˆ{ˆ
 , , ikik IDCT Bb =  where }{⋅IDCT  is the 

inverse DCT. 
Step 7. Obtain the reconstructed image of Ô  from 

ik  ,b̂ . 
Step 8. Calculate the peak signal-to-noise (PSNR) 

of Ô  as 

   
MSE

PSNR
2255log10=   (16) 

where 

    ∑∑
= =

−=
L

i

L

j

jiOjiO
L

MSE
1 1

2
2 )],(ˆ),([1  (17) 

and ),( jiO , ),(ˆ jiO  are elements of O, 

Ô , respectively. 
Step 9. Calculate the bit rate (bit/pixel), BR, for 

reconstructed image Ô  as 

    
LL

BBR u

×
×

=
8   (18) 

where uB  denotes the total number of 
bytes used in the bit stream obtained in Step 
5 and bytes used to indicate classes and to 
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store M ,kS . 
 Note that in OJPEG the overhead, 

 KL 2
2 log)/( ×τ +  )(log2 ττ ××M  bits, is 

required to indicate class indices and masks Mk  ,A . 
 
6. Simulation Results 
 
 This section is divided into two subsections. 
First, the optimality of VQ-based masks is verified. 
Then JPEG and OJPEG are compared in terms of 
PSNR and BR. To distinguish the results, no 
quantization and coding are applied in the optimality 
test. Moreover, all original image size is 512512 ×  
and image block size is 88 × . That is, 512=L  and 

8=τ . Four images Baboon, Lena, Harbor, and 
Peppers are used in the simulation. 
 
6.1 Optimality verification 
 
 In this subsection, image Lena is used as an 
example to justify the optimality of VQ-based masks. 
In the example, parameters K and M are specified as 
4 and 16, respectively. Representative image blocks 

kr  are obtained by KMC. With ik  ,B , kB  is 
obtained as in (3), for 41 ≤≤ k . Then masks Mk  ,A  

are found by kB  and kS . For the convenience of 
presentation, the two-dimensional index in Mk  ,A  is 
mapped to one-dimensional index. The conversion is 
given in Figure 2. With the new index notation, the 
16 selected elements with value one in Mk  ,A  are 
given in Table 1. Note that masks Mk  ,A  in Table 1 
are ordered sets whose order are significant. 
 Note that the average energy loss is inverse 
proportional to PSNR in reconstructed image, i.e., 
low average energy loss means high PSNR and vice 
versa. Thus the reconstructed image with Mk  ,A  has 
highest PSNR which is 36.139 dB in the example. In 
other words, PSRN with masks Mk  ,A′  is less than 
36.139 dB if MkMk  , , AA ≠′  for some k. If this is true, 
the optimality of Mk  ,A  is verified. To test the 
optimality of Mk  ,A , an element in Table 1 is 
randomly chosen and replaced with other element not 
in Mk  ,A . Twelve experiments have been performed 
and their results are summarized in Table 2. As 
expected, PSNR in Table 2 are all less than 36.139 
dB which is obtained by masks Mk  ,A . Therefore, the 
optimality is verified. 
 
6.2 Comparison between JPEG and OJPEG 
 
 In this subsection, the comparison of JPEG and 
OJPEG is made in terms of PSNR and BR. By Figure 
1, the PSNR obtained from JPEG are 28.1197 dB, 

36.4003 dB, 34.7112 dB, and 30.5387 dB, for images 
Baboon, Lena, Peppers, and Harbor, respectively. 
The BR for images Baboon, Lena, Peppers, and 
Harbor, are 1.6479, 1.0641, 1.0996, and 1.2796, 
respectively. The comparison results on PSNR for 
JPEG and OJPEG, up to PSNR∆  around 0.1 dB, are 
given in Table 3 where 

MOJPEGJPEG PSNRPSNRPSNR ,−=∆ . Notations 

JPEGPSNR  and MOJPEGPSNR ,  stand for the PSNR 
for JPEG and OJPEG with parameter M, respectively. 
In the case of M = 28 for image Lena, ∆PSNR = 
36.4003 – 36.3334 = 0.0669 which means OJPEG is 
worse than JPEG by 0.0669 dB in PSNR. The 
comparison results on BR, corresponding up to 

PSNR∆  around 0.1 dB, are also shown in Table 3 
where MOJPEGJPEG BRBRBR ,−=∆  and JPEGBR , 

MOJPEGBR ,  denote BR resulted from JPEG and 
OJPEG with parameter M, respectively. In the 
calculation of MOJPEGBR , , the overhead, 

 KL 2
2 log)/( ×τ +  )(log2 ττ ××M  bits, has 

been put into account. In the case of M = 28 for 
image Lena, ∆BR = 1.0641 – 0.7289 = 0.3352. This 
suggests that JPEG takes 0.3352 BR more than 
OJPEG. By Table 3, it indicates that JPEG pays ∆BR 
bit rate to have ∆PSNR dB improvement on PSNR 
when compared with OJPEG. From the other 
viewpoint, it can be said that OJPEG trades ∆PSNR 
dB in PSNR for ∆BR bit rate reduction. Take an 
example. For image Lena, JPEG uses 0.3352 BR to 
obtain 0.0669 dB improvement on PSNR when 
compared with the case in OJPEG of M = 28. Or it 
can be said that OJPEG pays 0.0669 dB in PSNR to 
exchange 0.3352 bit rate reduction. Even in the 
extreme cases in Table 3, images Baboon, Lena, 
Peppers, and Harbor still have bit rate reduction 
0.1072 (M = 48), 0.3352 (M = 28), 0.3014 (M = 32), 
and 0.0971 (M = 48), at the cost of 0.1305 dB, 
0.0669 dB, 0.1020 dB, and 0.0981 dB degradation in 
PSNR, respectively. If higher PSNR degradation is 
acceptable, i.e., smaller M, BR can be reduced 
further in OJPEG. By our experiences, M = 28 is 
sufficient for most of cases. As shown in Table 3, in 
this case the bit rate reduction for images Baboon, 
Lena, Peppers, and Harbor are 0.3905, 0.3352, 
0.3308, and 0.3340, respectively. In summary, the 
simulation results indicate that OJPEG is able to 
effectively trade little PSNR with significant bit rate 
reduction when compared with JPEG. 
 
7. Conclusions 
 
 In this paper, an approach to find masks based 
on VQ is proposed. The set of VQ-based masks is 
proven optimal in the sense of minimum average 
energy loss. Then optimal VQ-based masks are then 
applied in transform coding to select of significant 
transform coefficients. Next, a coding system 
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modified from JPEG is proposed which is termed as 
OJPEG. Basically, OJPEG consists of three stages. In 
the first stage, representative image blocks are found 
by the K-means clustering. Then for each class 
reorder the transform coefficients by their average 
energies and save the reordered indices of transform 
coefficients as set kS  for Kk ≤≤1  where K is 
the number of classes used. By kS , optimal 
VQ-based masks Mk  ,A  are obtained. At the second 
stage, the set of optimal masks Mk  ,A  is applied to 
select M significant transform coefficients. In the 
final stage, the M selected transform coefficients are 
quantized and coded as in JPEG where the scan order 
is based on kS . Simulations are provided to verify 
the optimality of VQ-based masks. The results are 
consistent with the theoretical results. Besides, 
OJPEG is compared with JPEG in terms of PSNR 
and BR. From Table 3, it indicates that ∆PSNR are in 
a decreasing order and get smaller and smaller, as M 
increases, for all images. It implies that OJPEG is 
able to select transform coefficients by their 
significance order. Though the PSNR of OJPEG is 
always less than that from JPEG except the case M = 
64, OJPEG is able to trade little PSNR with 
significant bit rate reduction since the effectiveness 
of OJPEG in the selection of significant transform 
coefficients. Simulation results in Table 3 have 
confirmed the tradeoff between PSNR and BR for 
OJPEG in comparison with JPEG. To sum up, 
through simulation results the optimality in 
VQ-based masks is verified, the application of 
optimal VQ-based masks to JPEG is shown, and the 
tradeoff between PSNR and BR for JPEG and 
OJPEG is evaluated. 
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Figure 1. The coding process of JPEG 
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Figure 2.  Index conversion for Mk  ,A  
 

Table 1.  The selected elements in Mk  ,A  

Ranking 
index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

61 ,1A  1 2 9 10 3 18 17 11 4 19 12 26 27 20 5 25

61 ,2A  1 2 9 3 10 11 4 18 17 19 12 5 20 25 26 27

61 ,3A  1 2 9 10 3 11 17 18 19 4 12 20 5 25 27 26

61 ,4A  1 2 9 3 10 4 11 17 18 19 12 5 20 6 13 26

 
Table 2.  Tests on the optimality of Mk  ,A  

Mask 
changed 61 ,1A  61 ,1A 61 ,1A  61 ,2A 61 ,2A 61 ,2A 61 ,3A 61 ,3A 61 ,3A 61 ,4A  61 ,4A  61 ,4A

Original 
element 

25 5 4 20 19 26 27 12 19 6 17 13 

Substitute 
element 

33 13 6 28 21 34 36 13 28 14 25 21 

PSNR 36.116 36.130 36.057 36.027 35.759 36.006 36.076 36.023 35.946 36.085 35.886 36.093

 
Table 3.  Comparison results for JPEG and OJPEG 

Baboon Lena Peppers Harbor Value 
of M PSNR∆  BR∆  PSNR∆ BR∆  PSNR∆ BR∆  PSNR∆  BR∆  
16 3.7768 0.7027 1.4043 0.5051 1.4948 0.4967 3.2644 0.5926 
20 2.8741 0.5675 0.6532 0.4250 0.7699 0.4277 2.5904 0.4729 
24 2.1002 0.4591 0.3439 0.3781 0.3863 0.3707 1.8632 0.3939 
28 1.5032 0.3905 0.0669 0.3352 0.1660 0.3308 1.2707 0.3340 
32 0.9240 0.3014 — — 0.1020 0.3014 0.8573 0.2818 
36 0.5734 0.2472 — — — — 0.5459 0.2093 
40 0.3406 0.1977 — — — — 0.3247 0.1656 
44 0.1890 0.1639 — — — — 0.1743 0.1313 
48 0.1305 0.1072 — — — — 0.0981 0.0971 
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